Cold Spring Harbor Laboratory  
Contact Us | Faculty & Staff Directory
Anne Churchland

Associate Professor

Ph.D., University of California, San Francisco, 2003

(516) 367-5035 (p)
  Churchland Lab Website
Animals are faced with many decisions.  They must integrate information from a variety of sources – sensory inputs like smell and sound as well as memories and innate impulses – to arrive at a single behavioral output. My laboratory investigates the neural circuits that underlie decision-making.

The study of decision-making provides a window into the family of brain functions that constitute cognition. It intervenes between perception and action and can link one to the other. Although much is known about sensory processing and motor control, much less is known about the circuitry connecting them. Some of the most interesting circuits are those that make it possible to deliberate among different interpretations of sensory information before making a choice about what to do. Anne Churchland’s lab investigates the neural machinery underlying decision-making. Lab members use carefully designed paradigms that encourage experimental subjects to deliberate over incoming sensory evidence before making a decision. Recent results show that rats and humans have a statistically similar decision-making ability. To connect this behavior to its underlying neural circuitry, the researchers measure electrophysiological responses of cortical neurons in rodents as they perform designated tasks. The lab’s current focus is on parietal cortex, which appears to be at the midpoint between sensory processing and motor planning. Churchland and colleagues also use theoretical models of varying complexity to further constrain how observed neural responses might drive behavior. This approach generates insights into sensory processing, motor planning, and complex cognitive function.

Sheppard, J. P. and Raposo, D. and Churchland, A. K. (2013) Tutorial and data for "Sheppard, J. P. and Raposo, D. and Churchland, A. K. (2013) Dynamic weighting of multisensory stimuli shapes decision-making in rats and humans. Journal of Vision, 13 (6).".

Raposo, D. and Sheppard, J. P. and Schrater, P. R. and Churchland, A. K. (2012) Multisensory decision-making in rats and humans. Journal of Neuroscience 32(11) pp. 3726-35.

Churchland, A. K. and Ditterich, J. (2012) New advances in understanding decisions among multiple alternatives. Current Opinion in Neurobiology

Churchland, A. K. and Kiani, R. and Chaudhuri, R. and Wang, X. J. and Pouget, A. and Shadlen, M. N. (2011) Variance as a Signature of Neural Computations during Decision Making. Neuron 69(4) pp. 818-831.

Churchland, A. K. and Kiani, R. and Shadlen, M. N. (2008) Decision-making with multiple alternatives. Nature Neuroscience 11(6) pp. 693-702.

Additional materials of the author at
CSHL Institutional Repository
PEW Scholar & Klingenstein-Simons Fellow
Read more

2012 Trubatch Career Development Award

2012 McKnight Scholar Award
Read more